[image: image1.png]

[image: image2.png]

 Student Protocol
	

	

Simulating Memory Networks
Student Protocol
	

	

Simulating Memory Networks
In this lab, you will be simulating memory networks with a set of mathematical equations that are commonly referred to as a combination of Hebbian learning and Hopfield networks. This will hopefully help you understand the role of synaptic interactions on maintaining and retrieving memories.

Written by Dr. David Nichols

Background

The brain is made up of billions of neurons that interact to result in the sensations, perceptions, and actions that we experience every day. Clusters of neurons in different anatomical regions of the brain are highly involved in the different aspects listed above – visual sensations begin in primary visual cortex, a.k.a. V1 (Ch 10, p 318), located in the occipital lobe, perceptions of objects require inferotemporal cortex, a.k.a. IT (Ch 10, p 336), located in the temporal lobe, and signals for actions necessary to interact with objects occurs in primary motor cortex, a.k.a. M1 (Ch 14, p 460), located in the frontal lobe. Action potentials are sent along axons between these areas with synapses on the dendrites located in the aforementioned areas, which accounts for the feed-forward processing necessary to act on the physical world.
However, a large portion of neural processing occurs within a given area through local synaptic contacts. This is especially true for determining the exact nature of a particular object since a given view of a real world object will activate many neurons, some of which preferentially respond to the same object and some that preferentially respond to different objects. The reason for this is that many objects have similar overlapping structures, such as a coffee cup and a briefcase both having handles, though objects certainly have other non-overlapping structures also, such as the middle cylinder of the coffee cup and the rectangular body of the briefcase. So how does the brain determine just what object is being viewed at a given time? The simple answer is that two basic processes are used: the building up of synaptic interactions for the same object during learning and the updating of which neurons are contributing to a particular percept during memory retrieval.
Hebbian learning is summarized succinctly with the statement: “Neurons that fire together wire together” (Ch 23, p 716). What this essentially means is that if two neurons tend to respond at the same time then they are responding consistently to the same object and it is advantageous of the brain to use the response of one neuron to strengthen the response to the other neuron. This is possible because of synaptic plasticity (Ch 23, 716-720) and the specific principle described is long-term potentiation (LTP; Ch 23, 718). The reason this is useful is because sometimes the inputs into the perceptual system are noisy and only one of the two will be firing strongly. If the visual system is to settle in on the common percept shared by the neurons then they both need to be firing together. This is done with strengthening excitatory connections between the neurons, i.e. building up the effectiveness of EPSPs from one neuron on the other. Donald Hebb described this as an advantage of cell assemblies (Ch 24, p 733; Fig 24.5). Another advantage is that the same regions of the brain involved in perception can also be involved in memory storage, such as area IT for face perception (Ch 24, p 733-735). The involvement of multiple neurons instead of just a single neuron in the storage of memories allows memories to have a greater immunity to cell death and using combinations of neurons allows a memory network to potentially store more memories than the number of neurons within the network (box 24.3, p 736).
There is a flip side to the axiom of ‘neurons that fire together wire together’ and that is what is done with neurons that either sometimes fire at the same time and sometimes do not, i.e. that don’t really consistently have much to do with one another, and also neurons that never fire at the same time, i.e. seem to be responsible for very different percepts. (A handy mnemonic for this is “Neurons that fire out of sync lose their link” – Ch 23, p 717). In the former case synaptic connections between the pair of neurons would preferentially be decreased so that the firing of one has no effect on the firing of the other. This decrease in effectiveness of the pre-synaptic neuron on the post-synaptic neuron is referred to as long-term depression (LTD; Ch 23, 718). However, in the latter case synaptic connections would preferentially be strong, but in an inhibitory fashion, i.e. building up the effectiveness of IPSPs from one neuron on the other.

This theoretical model of learning (acquisition) and memory (retention) now has some well-established physiological bases. In particular, LTP has been shown to be possible through NMDA receptors being active, resulting in lots of Ca2+ influx, whereas LTD results from low levels of NMDA receptor activation resulting in low levels of Ca2+ influx (Ch 23, p 718-720). However, this may have more to do with the initial learning phase, involving the medial temporal structures (including the hippocampus and rhinal cortex – Ch 24, p 740-743) and the diencephalon (Ch 24, p 743-744), than long term memory storage or retrieval. Much of this has been deduced from particular patterns of deficits from brain damage patients, such as H.M. who had severe anterograde amnesia for declarative memories but had intact long-term and working memory (Ch 24, p 738-740). Also consistent with the involvement of the medial temporal structures in memory consolidation is the explicit demonstration of Hebbian learning through LTP in CA1 neurons within the hippocampus due to a combination of temporal and spatial summation (Ch 25, p 778-779). LTD has also been shown in CA1 neurons, with the switch from LTD to LTP having to do with an increase in activation of NMDA receptors (Ch 25, p 781-783). LTP occurs specifically with strong depolarization of the dendrites, which can occur from either summed synaptic input or back propagation of an action potential from the cell body to the dendrites (box 25.1, p 782).

Principles of memory retrieval are demonstrated in a Hopfield network by first implementing the Hebbian learning principles discussed above and then seeing how activation of clusters of neurons plays out over time through their synaptic connections. The basic principle is that a noisy input is sent into a group of neurons and then the synaptic connections determine which subset of the neurons will remain active, indicating one particular percept/memory over another.

Required Equipment

· Matlab software
Procedure
The first task is to get a feel for the program by examining its parts of viewing its output.

1. Open the Hebbian Learning simulation equations on the laptop. The files are in a folder under ‘Lab 8 – Simulating Memory Networks’.
Open the example simulation equations by double clicking on the file ‘letterex’. It may take a moment for Matlab to start up. Run the program. If it tells you that the file cannot be found, click ‘change folder’.
2. Examine the output figure. The top four figures, labeled ‘First Memory’ through ‘Fourth Memory’, represent the different valid perceptual/memory states of the system. Note that the visual representation of the memories is of black letters on a white background (‘D’, ‘J’, ‘C’, ‘M’). Each represents the states of 25 individual neurons, with white being ‘on’, i.e. firing action potentials, and black being ‘off’, i.e. not firing action potentials. In reality the brain need not be so nicely spatially organized to represent memories, but this is being done to make it simpler for you to see. We will get to the next 4 sets of figures later.
3. Examine the Matlab code in lines 4 through 29. This is where the ‘memories’ are being defined by using simple ones and zeros to represent neurons being on (1) or off (0). On lines 33 and 34 the states of the neurons get switched to +1 for on and -1 for off to simplify the mathematics.

4. Examine the Matlab code in lines 36 through 46. This is where the synaptic connections between the neurons are being defined based on how often two neurons are either both on or off together, i.e. ‘fire together’ in high correlation, or one is on and the other off, i.e. ‘fire out of sync’ in no correlation.
5. In the Matlab command window, type: w(1,20:22) The output should be 0, 4, -2. This represents the synaptic connections between neuron 1 and neurons 20, 21, and 22, respectively.

6. In the Matlab command window, type: newdata(:,[1 20 21 22]) The output should be a set of +1 and -1, with four rows down and four columns across. Each row is a different memory and each column is the ‘on’ and ‘off’ values for a particular neuron (e.g. column 1 is neuron 1, column 4 is neuron 22) for the 4 different memories.
Comparing column 1 with column 2, notice that they are consistent 2 times (bottom 2 rows) and inconsistent 2 times (top 2 rows), meaning that their firing is unrelated and therefore they don’t have any influence on one another (a synaptic strength of 0). Now compare column 1 with column 3 and notice that they are always consistent with one another and therefore they have strong excitatory connections (a synaptic strength of +4). Finally, compare column 1 with column 4 and notice that they are consistent just 1 time and inconsistent 3 times and therefore they have weak inhibitory connections (a synaptic strength of -2).
This shows that the higher the correlation between two neurons, the greater the magnitude of their synaptic connections. When they are mostly the same state (i.e. either both on or off for the same memories) then the connection is positive, when they are mostly the opposite state (i.e. one on and the other off for the same memory) then the connection is negative, and when they are equally often the same as they are the opposite, then there is no connection between them because they are acting independent of one another. This is the implementation of the Hebbian learning process of synaptic rearrangement (Ch 23, p 708) wherein different amounts of synaptic interaction are simulated based on the correlation of firing between two neurons.
7. Look at lines 58 through 67. This is where the memory retrieval process is taking place by updating the output of one neuron at a time in relation to all of the other neurons. That is, synaptic communication is simulated by adding together all of the EPSPs and IPSPs received from all of the other neurons on a particular neuron and determining if that neuron will be ‘on’ or ‘off’ (this is done in the function ‘AUpdate’ – line 65). The process is then repeated for all of the other neurons before Xnew is determined as the state of all of the neurons (also within ‘AUpdate’). If at least one neuron changed its state (checked on line 58) then the process is repeated again until eventually it settles into a ‘stable’ state without any more changes (or if 50 iterations have occurred – line 61).
8. Now look at the output figure again. What this shows you is that for initial states pretty close to a stored memory (2 or 4 errors) then the correct stored memory is retrieved, i.e. it works. When the initial states are pretty far from a stored memory (6 or 8 errors) then sometimes a stored memory might be retrieved (6 errors) and sometimes the stable state will not match any of the stored memories (8 errors), i.e. it doesn’t work.
9. Ask your instructor before proceeding if you want to know more information about how the program works. In the set of 3 activities below you will be exploring the program by testing how well it works under different levels of noise as a function of how many memories are stored in the system.

Activity 1: Explore the robustness of the memory network with 4 memories.

This activity will take you through the process of deciding whether or not a particular output subjectively matches the input in order to establish a rule for objectively measuring whether or not the memory network ‘works’ for a particular level of noisy input.
First you will subjectively determine whether or not a ‘memory’ occurred and then compare that with the objective output measures to determine your personal criterion for ‘matches’.
10. Open the file ‘letter_test1a’. Make sure that num_test_runs = 10 and num_flips = 2. ‘num_flips’ controls the amount of noise in the system by specifying how many neurons are going to be flipped from on to off or vice versa in relation to a stored memory. Click ‘run’.
11. Look at the output figure in the lower left hand corner of your screen. From left to right it shows the ‘initial state’, which is the true physical object that the memory system is trying to recover, then the ‘error state’ which is the fuzzy input into the memory system, and then ‘stable state’ which is the state of the memory network that it settles into – which may be a true ‘memory’ that matches the physical object or it may not be. Make a subjective measure (either individually or as a group – but at least discuss it as a group) as to whether or not the stable state matches the memory state. This is the first of 10 examples that will be shown so keep a mental count of the number of matches.
12. Press the spacebar to move to the next example. Decide whether or not a match has occurred and update your mental count, if need be.
13. Repeat step 13 until all examples have been shown. Mark on your data sheet what the total count was for subjective matches in the column labeled ‘num_flips=2’. Now look at the objective measures of the output in the command window and copy those values onto your data sheet.
14. Change num_flips to 5 and then repeat steps 12-14.

15. Repeat step 15 while changing the num_flips to match those on your data sheet (10 and 15).

16. On your data sheet write down what you will use as your definition of whether or not the memory network ‘works’ for a particular level of noisy input. Consider this as a minimal level of performance across repetitions. For instance, if you think that an exact match is necessary on a particular trial in order to say it ‘works’, then you might say that 90% or perhaps 50% of the trials need to have an exact match in order to say that the memory network ‘works’ for a given level of noise. Hint: Use a criterion for which the memory network ‘works’ for 2 and 5 flips but not for 10 and 15 flips.
Now you will run a large number of simulations to determine a more reliable estimate of the objective measures of the network performance for a particular level of noise.
17. Open the file ‘letter_test1b’. Make sure that num_test_runs=1000 and num_flips=2.
18. Run the file and then copy the output values from the command window onto your data notebook. Also indicate whether or not the memory network ‘works’ (write ‘yes’ or ‘no’) based on your personal criterion that you determined above.
19. Repeat step 19 for the other noise levels (4, 6, 8, 10, and 12).
20. Adjust your personal criterion, if necessary, to make sure that it ‘works’ for low numbers of flips and then, at some point, no longer ‘works’ for high numbers of flips.
21. Based on the outputs you have gathered so far, estimate what the values will be for num_flips=20 and write the estimates on your data notebook. Now run the program for num_flips=20 and mark the actual output on your data notebook.
Activity 2: Compare the robustness of the network for just a pair of 2 memories, but using memories with different degrees of overlap.
Remember that the strength of the synaptic connections is used by the memory network to adjust from the initial input state to a final stable state that hopefully matches a stored memory. Plus, the synaptic connections are determined by how similar or different the stored memories are from one another. This exercise will help you to see how the similarity between stored memories influences how well they are retrieved.
In this first part you will predict the output of the memory system for two memories that are either mostly different or mostly similar.
22. Open the file ‘letter_test2a’. Hit ‘run’.
23. Visually compare the two pairs of memories (D/M and J/C). Now examine the objective measures of their similarities based on the number of neurons that are ‘on’ for each memory and also how many exact matches they have, i.e. either both ‘on’ or both ‘off’ (these are in the command window).

24. On your data sheet, state your prediction regarding whether memory retrieval performance will be better for the more similar or more dissimilar pairs.

In this second part you will run a large set of simulations to be able to effectively compare between the network performance to the two sets of memories.
25. Open the file ‘letter_test2b’. Make sure that memories_to_use=[‘D’,’M’]. Also make sure that num_flips=2 and num_test_runs=1000. Hit ‘run’. Copy the objective measures from the output to your data notebook and mark whether or not it ‘works’ based on your personal criterion from above.
26. Repeat step 25 for the remaining num_flips values from your chart (4, 6, 8, 10, 12).

27. Change memories_to_use to [‘J’, ‘C’]. Repeat step 26 for all of the values of num_flips.
Activity 3: Explore the upper end of how many memories can be stored.
The number of memories that can be stored in a network of neurons is critically dependent on how many neurons there are. We have fixed the number of neurons at 25, so we can only modify the number of memories to determine how quickly the memory system will break down.
In this first part you will create two additional letter memories to store in the system.
28. Determine two additional letters to store into the memory system. They can be upper case or lower case, but they must be clearly discernible in a 5 by 5 grid like all of the other memories are. You can practice sketching letters on the back of your data sheet, but make sure to create a drawing of your final two new memories on your data sheet in the grids provided.
29. Open ‘letter_test3a’. Modify lines 32 and 37 to put your new memories into the system. The ones and zeros are in sets of 5 to indicate one row at a time, with 1=white and 0=black. Start in the top left and go left to right, then down a row and left to right, and then down a row, etc. If this doesn’t make sense, try running the program first to see how the already existing pattern of numbers comes out. Once you enter your numbers, hit ‘run’. Look at the figure on the left to view all of the different stored memories. Redo the entry of your new memories as needed until they match your drawing.
30. Save the file with the initials of your group added to it. Make sure everyone in the group saves the file to their USB drive.
31. Print the Figure 1 window to a PDF, saving it with your groups’ initials. Make sure everyone in the group saves the file to their USB drive.
In this second part you will look at the performance of the network with 6 memories.
32. Open ‘letter_test3b’. Load your chosen memory letters into the network system by copying line 32 from letter_test3a for Letter_5 and pasting it into line 16 of letter_test3b and then again for Letter_6. Make sure num_flips=2 and num_test_runs=1000.
33. Run the program for num_flips=2. Copy the output from the command window onto your data notebook. Mark whether or not it works based on your personal criterion.
34. Repeat step 33 for the remaining num_flips values (4, 6, 8, 10, 12).

35. Close down the Matlab program as you are finished with the lab.

36. Please complete the lab questions in class as a group.

[image: image3.jpg]4 MathWorks*

	
	

	Page 1 of 6
	

	
	

	Page 6 of 6
	

