Physics 499 Tutorial: Thermal Physics

Instructor: Daniel Robb Phone: 375-5250 Office: TREX 266B Email: robb@roanoke.edu Meeting: Th 11-12

Office Hrs: MWF 2-4, Th 9-11 (and by appt.)

Course Description:

Thermal behavior of systems; energy and entropy; equations of state; changes of phase; elements of continuum and statistical approaches

Textbook:

• *Thermal Physics* by Ralph Baierlein. Cambridge University Press, 1999. (Available in paperback). **ISBN-13:** 978-0521658386

Purpose of the Course:

What do automobile engines, cloud formations and rubber bands have in common? The behavior of each of these systems depends on the flow of matter and energy among the constituent elements of these systems and the surrounding environment. Whereas mechanics, electricity and magnetism, and quantum mechanics describe the behavior of individual particles under the influence of forces, thermal physics attempts to explain and predict the behavior of large collections of particles.

"A theory is the more impressive the greater the simplicity of its premises, the more different kinds of things it relates, and the more extended its area of applicability. Hence the deep impression that classical thermodynamics made upon me. It is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown" – Albert Einstein.

This course will give you a practical understanding of how to use classical thermodynamics, as well as an appreciation for its wide range of applicability. We will work hard to understand the link between the mathematical formalism of statistical mechanics, which is rooted in the microscopic properties of systems, and the macroscopic properties (temperature, pressure, volume, etc.) described by classical thermodynamics. Finally, we will look at an application of thermal physics – the modeling of the Earth's climate – gaining an understanding of the types of models used, as well as separating fact from fiction in the current "climate debate".

Specific Goals of the Course:

1. Acquire the ability to apply classical thermodynamics to physical systems, and understand the Three Laws of Thermodynamics

2. Understand the link between statistical mechanics and thermodynamics, and gain a beginning proficiency in "stat mech"

Feedback and Evaluation:

I will assign numerical grades to all your work. I *may* curve your final grades (upward), but otherwise you can expect to receive an "A" for 90-100, a "B" for 80-89, etc. I will assign +/- to your final grades by examining the distribution of grades and taking into account my perception of your effort in the course. These are the categories and percentages that will be used:

<u>Problem sets</u> :	50% (5 @ 10 % each)
<u>Tests</u> :	30% (2 @ 15 % each)
Final exam:	20%

<u>Problem sets</u> are due at 5:00 PM on the due date. I encourage you to discuss problems with other students, but the work you turn in should be your own (i.e., don't copy work from another student, or allow another student to copy your work.) See the next page for the policy on late work.

<u>Tests</u> will be given in a free classroom during our meeting time. Each test will consist of several conceptual questions requiring written responses, and several calculation problems. The first test will cover the first two course units, i.e., classical thermodynamics and kinetic/transport theory. The second test will cover the third course unit on statistical mechanics. Note that *you will be given all necessary formulas on each test*.

The <u>final exam</u> will be comprehensive, including all four course units. It will also include conceptual questions, and calculation problems.

Attendance Policy:

You are expected to attend every weekly meeting. As this is an independent study, I will not lecture during our weekly meeting, but I will work to answer questions you have from the reading. If you are going to be absent from a meeting, I must be notified in advance. If 3 weekly meetings are missed without prior notification, then I will assume you are not interested in completing the course and you will be dropped from the class with a grade of DF.

Policy on Late Work:

I will grade an assignment with a 10% lateness deduction if turned in by 5:00PM on the due date. Following that, assignments will receive a further 10% lateness deduction for each successive schoolday late (schooldays are Monday-Friday; days are considered to end at 5:00 PM). As a result, after one week assignments receive a 50% deduction and after two weeks, assignments receive a 100% deduction; that is, no assignment will be accepted if more than two weeks late. Under extreme circumstances only will I consider adjusting the late policy for an assignment.

Make-up Tests:

Make-up tests will not be given. If you miss a test, and have an official college excuse for that absence, then your final exam grade will count for the missed test.

Academic Integrity:

The College academic integrity policies are vigorously enforced. Although you are encouraged to work in groups on your homework assignments, all work turned in for a grade must be your own. Please familiarize yourself

Disability Support Services:

If you are on record with the College's Office of Disability Support Services as having academic or physical needs requiring accommodations, please meet with me during my regular office hours or schedule an appointment as soon as possible. We need to discuss your accommodations before they can be implemented. Also, please note that arrangements for extended time on exams and testing in a semi-private setting must be made at least one week *before every exam*.

If you believe you are eligible for accommodations but have not yet formally contacted Disability Support Services, please contact the Coordinator for Disability Support Services, at 375-2247 or drop by the Center for Learning & Teaching in Fintel Library.

SEMESTER SCHEDULE

<u>#</u>	<u>Date</u>	<u>Topic</u>	<u>Reading</u>	<u>Due</u>
		UNIT 1: Classical thermodynamics		
1	Sept. 2	Introduction and preview		
2	4	Heat, temperature and the 1 st Law	1.1-1.4	
3	7	Adiabatic processes	1.5-1.7	
4	9	Multiplicity and the 2 nd Law	2.1-2.3	
5	11	Entropy I	2.4-2.5	
6	14	Entropy II	2.6-2.8	
7	16	The Carnot cycle	3.1-3.4	
8	18	Reversibility and real engines	3.5-3.7	
	_	UNIT 2: Transport theory		
9	21	Random walks	15.1-15.2	PS 1
10	23	Momentum transport and viscosity	15.3-15.4	
11	25	Momentum transport and viscosity	15.3-15.4	
12	28	Thermal transport and diffusion	15.5-15.6	
12	30	Thermal transport and diffusion	15.5-15.6	PS 2
13	Oct. 2	Review and catch-up	13.3-13.0	r J Z
		TEST 1		
15	5			
-		UNIT 3: Statistical mechanics		
16	7	Density of states	4.1	
17	9	General definition of temperature	4.2-4.4	Paper draft
18	12	Thermal probabilities	5.1-5.3	
19	14	The partition function	5.4-5.5	
20	16	The canonical distribution	5.6-5.8	Paper final, PS 3
		Fall break		
21	26	Chemical potential I	7.1	
22	28	Chemical potential II	7.2-7.5	
23	30	Ideal gas: quantum treatment	8.1-8.3	
24	Nov. 2	Ideal gas: classical limits	8.4	
25	4	Free energy	10.1-10.3	
26	6	"Minimize the free energy"	10.4-10.8	
27	9	Chemical equilibrium	11.1-11.2	
28	11	Chemical equilibrium II	11.3	
29	13	Classical stat mech	13.1-13.2	PS 4
30	16	Equipartition theorem	13.3	
31	18	Review and catch-up		
32	20	TEST 2		
5-		UNIT 4: Phase Transitions and the 3 rd Law		
33	23	Phases of matter I	12.1-12.3	
34	30	Phases of matter II	12.1-12.5	
35	Dec. 2	Fermions at low temperature I	9.1	
35	4	Fermions at low temperature I	9.1	
	4		9.1	
27		Thanksgiving break Prelude to the 3 rd Law	14 1 4 2	
37	7		14.1-14.3	PS 5
38	9	The 3 rd Law	14.4-14.5	
39	11	Review and catch-up		

Note: You should expect to spend a minimum of 12 hours per week on reading, homework, and our hourly weekly meeting.