Instructor:	Prof. Jan Minton jminton@roanoke.edu	461 Trexler Hall Office Phone: 375-2488
Office Hours:	By appointment: Monday \& Wednesday 3:30-4:30 and Tuesday \& Thursday 2:30-4:30 Make appointments online at jminton.youcanbook.me	

Course Objective: This course is focused for students intending to pursue a degree in the biological sciences. The course builds upon statistics knowledge gained in INQ 240 and offers an introduction to mathematical modeling - both continuous and discrete. Students will learn how to apply appropriate models and statistical tests to a variety of situations.

Intended

Learning Outcomes:

Required

Materials:
Textbook 1: Mathematics for the Life Sciences, Bodine, Lenhart, and Gross
Textbook 2: Handbook of Biological Statistics, McDonald
Free on-line at http://www.biostathandbook.com/
Supplemental Handouts
Inquire course management system available through MyRoanoke
Calculator (not on cellphone)

Attendance Policy:

Overall Workload: In addition to the 3 hours of class time, you are expected to work outside of class for a minimum of 9 additional hours per week.
Full attendance is expected. Simple attendance is not graded, but there is good reason to predict that poor attendance will lead to lower grades overall. As stated in the Academic Catalog, "Every student is accountable for all work missed because of class absence. Instructors, however, are under no obligation to make special arrangements for students who are absent." Also, anytime you come in late or leave during class you miss part of the course and you disrupt the educational experience for everyone else. Do this only in the case of emergency.

Homework:	Regular homework (assig reading questions. It is im monitor your own progr of the course average ca Inquire and used to mak	rtually nt that be pr on but rline	seriod) w his work in a the next cla t will be rec on final cour	a mix of p ely fashion This work w d as respon rades.	tice proble that you ca not be a di s collected
Research Articles:	Students will examine tw analysis of data and the along with guided readin	ogy res will focus tions.	pers. One pa hematical	will be based ling. Articl	on statistica will be provid
Tests:	There will be three in-cla circumstances that proh	ten tes from	up tests will appearing in	given only classroom	der very ext
Case Study Explorations:	Six case studies will be e will be conducted during missing class on these da will not be accepted for	using with stu be per after	omputer ap rking in assi complete t ve been pos	tions. Thes d teams of ork indepe for that ass	Students ently but su ment.
Poster Session:	Students will work in tea mathematical modeling. Wednesday, December	2 to ad gs will ailed re	ological topi nted in a pos ts for the po	ough data session dur will be cov	alysis and class on d in class
Final Exam:	The final exam time for	urse will	11:30 on Tu	ay, Decemb	10.
Academic Integrity	The college policy is fully	rted.	ns regarding	missible	urces and
And Electronic	versus group work will	ly spe	each graded	nment.	
Devices:					
	The use of any unauthoriz strictly prohibited. Cell p completing in-class grad	ctroni are ne rk will	during comp tted. Any us ered a brea		raded wo ved device egrity.
Grading:	Weights for the various given below:	nents	rse and final	rse letter g	e assignme
	Research Articles	10\%	A 93-100	B- 80-82	D+67-69
	Tests	40\%	A- 90-92	C+ 77-79	D 63-66
	Case Study Explorations	20\%	B+ 87-89	C 73-76	D- 60-62
	Poster Project	15\%	B 83-86	C- 70-72	F below
	Final Exam	15\%			

Be aware - The Inquire gradebook will be used for grade STORAGE only. Inquire will not be used to calculate your official course average. Any averages you might see in Inquire for this course should not be trusted.

Schedule:

Case Study Explorations: Fridays - September 6, 13 October 4, 25 November 1, 8 Research Article Assignments due: Fridays - September 27 November 22
Poster Session - Wednesday December 4
Final Exam - Tuesday, December 10 8:30-11:30

Day by Day Details provided on Inquire

IMPORTANT TO NOTE: Material, content, and scheduling are subject to change if deemed appropriate or necessary by the instructor.

Math 115 Topics

Discrete Models

Ecological Succession: Fixed total area with various classifications (examples: Grass/Shrubs/Trees or Wet/Dry) Written description, flow diagram, equations, Transfer matrix

Find step by step distribution
Find equilibrium distribution

Population with distinct life stages (examples: Egg/Hopper/Adult, Calf/Yearling/Adult)
Written description, equations, Leslie matrix
Find step by step distribution
Find long term growth rate
Find long term population structure

Continuous Models

Exponentials and logs - review
Average rate of change (calculate) vs Instantaneous rate of change (conceptual, relate to on graph) Growth Models based on rate of change:

Single Population: Given the differential equation, students use known solution forms Multiple Populations that Interact: Students set up system of differential equations.

Working with Data

Continuation of INQ 240 topics: Linear Regression
Hypothesis Testing - means, proportions, ANOVA, Chi Square
With added emphasis on: Test selection
Assumptions
Transformation of Data

Significance vs Importance
Common errors in sampling, analysis, and reporting

And More ...

Hardy Weinberg Equilibrium Model
Mark and Recapture Method of Counting
Counting by Serial Dilution
Calculation competence: working with formulae, percent, ratios, unit conversion
Interpretation of Graphs
Mathematics related to Size

