MATH 121, Fall 2019: Calculus I

Students are expected to adhere to the Academic Integrity policies of Roanoke College. All work submitted for a grade is to be your own work! No collaboration is allowed on quizzes or tests. Unless otherwise stated, you many work together on the homework, but should write up your solutions separately.

Cell phones must be turned off prior to entering the classroom. Laptops may be used for note-taking during regular class sessions, if this seems useful to you, but you may not log on to the internet or to an email server unless specifically told to do so. The use of laptops and other electronic devices during an exam is strictly prohibited. This includes tablets, smart phones, and iPods. Any use of such devices during a quiz or exam will be considered a breach of academic integrity. Note that looking at or using your cell phone during a test or quiz is considered a violation of Academic Integrity regardless of your purpose or intent in doing so.

Attendance \& MakeUp Work

Recitations

Problem Sets

You must be enrolled in the recitation portion (MATH 121R) in addition to the current course. MATH 121R will review important concepts needed for calculus (such as trigonometry, exponential and logarithmic functions, and graphing) as well as provide time to practice with new concepts encountered in MATH 121. MATH 121R operates as a separate course, but it counts as 10% of the course grade for MATH 121. Please consult the recitation course syllabus for additional information on policies and grading.

A problem set will be due each Wednesday. These will be assigned on the previous Wednesday and each are worth a total of 25 points. There are three parts to each problem set. The first part is worth 10 points and will be graded based on effort and completeness. This part consists of the daily homework assignments for the previous three class periods. Daily homework will include roughly 10 problems and you are welcome to ask questions about them at the beginning of class. The second part of each problem set is worth 12 points and will be graded based on correctness. Each week you will complete 4 problems which will be carefully graded, with each problem worth 3 points. The final portion of the problem set is based on presentation, and worth 3 points.

When you turn in your problem set on Wednesday, make sure the four problems graded for correctness are on top and then below are your three daily assignments. Your homework should be neat, organized, and stapled. Solutions will be posted on the following Friday. You can collaborate on problem sets but you must write up your own solution. If you are looking at another person's work when you are writing up your problem set, then you are in violation of the academic integrity policy of Roanoke College.

If you will be absent, turn in your homework before the class period it is due, or have a friend turn it in for you. Late homework will only be accepted within 2 days of the original due date and will automatically lose the completion points.

As part of the homework grade, there will be 2 reflections assigned during the semester. You can find the prompts on Inquire and upload your responses there as well. They are worth 10 points each and will be graded on how thoughtful and complete you are.

Quizzes	There may also be written quizzes in this class. They may either be in-class quizzes or take- home quizzes. I may occasionally warn you about an upcoming quiz but you should be prepared to take a quiz on any given day.		
Technology	In addition to the weekly problems sets, we will occasionally have questions and		
assignments based in Mathematica. Mathematica is a powerful software package that we			
will use throughout class to help emphasize calculus concepts over needing to compute, say,			
derivatives and integrals by hand every time we need them. This software will let us spend			
more time on the "how and why" of calculus and what it can potentially be used for in the			
future. As part of this class, we will spend a few full days using this technology, done as a			
combination class discussion, work with a partner, and homework.		\quad	Six tests will be given throughout the semester according to the schedule on the last page
:---			
of this syllabus (any changes from this schedule will be announced well in advance). Each			
test will focus on the material learned since the last test, but as with most mathematics			
classes, the exam will necessarily require you to understand and remember things from the			
past.			
The final exam will be comprehensive and given during the scheduled time for block 2:			

Community

Please feel free to become an active member of our department's community. Each of the three disciplines in our department has a student club and you should join! The Roanoke College Student Chapter of the Mathematical Association of America (or "Math Club" for short) meets periodically, plays and learns about games and hosts evening events and the annual Pi-Day celebration! Membership in our Math Club also grants membership into the MAA itself, one of the premiere professional mathematical organizations in the world.
In addition, our department offers a weekly tea time for students and faculty; feel free to stop by the MCSP Study Lounge (Trexler 271) for tea and cookies on Thursdays from 2:15 PM to 3:15 PM. Come meet other students as well as chat with the MCSP faculty members in a casual setting!

Subject Tutoring	Subject Tutoring, located on the lower level of Fintel Library (Room 5), is open $4 \mathrm{pm}-9 \mathrm{pm}$, Sunday - Thursday. Tutoring sessions are available in 15, 30, or $45-$ minute appointments.
Feel free to drop by for a quick question or make an appointment at	
www.roanoke.edu/tutoring for a longer one-on-one appointment. For questions or	
concerns, please contact us at 540-375-2590 or subject tutoring@roanoke.edu.	

Date		Section	Topic	Items Due
Wed	Aug 28		Preview; Small Group Discussion	
Fri	Aug 30	1.2	The Concept of Limits	
Mon	Sept 2	1.3	Computation of Limits	
Wed	Sept 4		Introduction to Mathematica	PS 1
Fri	Sept 6	1.4	Continuity and its Consequences	
Mon	Sept 9	1.5	Limits Involving Infinity	
Wed	Sept 11	2.1	Tangent Lines and Velocity	PS 2
Fri	Sept 13		Test 1	
Mon	Sept 16	2.2	The Derivative	
Wed	Sept 18	2.3, 2.4	Derivative Rules Day \#1	PS 3
Fri	Sept 20	2.5	Derivative Rules Day \#2	
Mon	Sept 23	2.6, 2.7	Derivative Rules Day \#3	
Wed	Sept 25		Derivative Recap	PS 4
Fri	Sept 27		Test 2	
Mon	Sept 30		Derivatives in Mathematica	Reflection 1
Wed	Oct 2	3.2	L'H^opital's Rule, Indeterminate Forms	PS 5
Fri	Oct 4	3.3	Maximums/Minimums	
Mon	Oct 7	3.4	Increasing and Decreasing Functions	
Wed	Oct 9	3.5, 3.6	Concavity and Curve Sketching	PS 6
Fri	Oct 11		Test 3	
	Fall Break!			
Mon	Oct 21	3.1	Linear Approximation, Newton's Method	
Wed	Oct 23	2.8	Implicit Differentiation	PS 7
Fri	Oct 25	3.8	Related Rates	
Mon	Oct 28	3.7	Optimization Day \#1	
Wed	Oct 30	3.7	Optimization Day \#2, Applications Recap	PS 8
Fri	Nov 1		Test 4	
Mon	Nov 4	4.1	Antiderivatives	
Wed	Nov 6	4.2	Sums	PS 9
Fri	Nov 8	4.3	Area	
Mon	Nov 11	4.4	The Definite Integral	
Wed	Nov 13		Integration in Mathematica	PS 10
Fri	Nov 15		Test 5	
Mon	Nov 18	4.5	The Fundamental Theorem of Calculus	

Tentative Course ScheduleWed Nov 20 Fri	4.6	Integration by Substitution Integration Recap	PS 11		
	Mon	Nov 25	7.1	Modeling with Differential Equations Thanksgiving Break	
	Mon	Dec 2	7.2	Separable Differential Equations Test 6	PS 12
Wed	Dec 4		Review	Reflection 2	
	Fri	Dec 6		Final Exam: 8:30 AM - 11:30 AM	

