MATH122, Fall 2019: Calculus II

Instructor	Maggie Rahmoeller Email: rahmoeller@roanoke.edu Office: Trexler 270J		
Class Meetings	MWF: 10:50AM-11:50AM in Trexler 263	\quad	By appointment only through drmaggie.youcanbook.me/ (or email me if no time slots are
:---			
Office Hours			
available). You can book up to 3 days in advance but you have to book at least 15 minutes			
before the time slot.			

A grade scale will be determined after final grades are computed, but will be no worse than the scale given below:

		B+	$87-89$	C+	$77-79$	D+	$67-69$		
A	$93-100$	B	$83-86$	C	$73-76$	D	$63-66$	F	$0-59$
A-	$90-92$	B-	$80-82$	C-	$70-72$	D-	$60-62$		

Attendance \& Make-Up Work

Attendance is critical to the understanding of the material in the course; it is both required and expected. Any absence that is not discussed with the instructor prior to the missed class is considered unexcused. Unexcused absences may result in the lowering of the final grade (for example, a B to a B-). When absent, excused or unexcused, you are responsible for all material covered in class. You will not be allowed to make up any work missed due to an unexcused absence. Should you miss a class or part of a class, email or talk to me as soon as possible to see if anything can be done to help you catch up.

Late Work	Each day an assignment is late, your grade on that assignment will be reduced by one letter grade. I will not accept assignments that are more than three days late.
Homework	A problem set will be due each Monday. These will be assigned on the previous Monday (except for HW 1) and each are worth a total of 25 points. There are two parts to each problem set. The first part is worth 15 points and will be graded based on correctness and presentation. Each week you will complete 3 problems in this first part. Each of these problems is worth 5 points - 4 points are for correctness and 1 point is for presentation.
The second part of each problem set is worth 10 points and will be graded based on effort	
and completeness. This part will consist of the three daily homework assignments for the	
previous three class periods.	
When you turn in your problem set on Monday, make sure the first part is on top (the	

Academic Integrity Students are expected to adhere to the Academic Integrity policies of Roanoke College. All work submitted for a grade is to be your own work! No electronic devices other than calculators can be taken out during any class or testing period (this includes cell phones) unless written consent is given by the professor (e.g. Mathematica may be allowed for some tests). Note that looking at or using your cell phone during a test or quiz is considered a violation of Academic Integrity regardless of your purpose or intent in doing so.

Subject Tutoring Subject Tutoring, located on the lower level of Fintel Library (Room 5), is open $4 \mathrm{pm}-9 \mathrm{pm}$, Sunday - Thursday. We are a Level II Internationally Certified Training Center through the College Reading and Learning Association (CRLA). Subject Tutors are highly trained Roanoke College students who offer one-on-one tutorials in a variety of general education and major courses such as: Business, Economics, Mathematics, INQ 240, Modern Languages, Lab Sciences, INQ 250, and Social Sciences. Tutoring sessions are available in 15, 30, or 45minute appointments. Feel free to drop by for a quick question or make an appointment at https://libguides.roanoke.edu/subject_tutoring for a longer one-on-one appointment. For questions or concerns, please contact us at 540-375-2590 or subject_tutoring@roanoke.edu.

Exams We will be making use of "Mastery-Based Examination," a system that is probably very different from what you are used to; do not hesitate to ask me questions in class or my office at any time. In the mathematics community many are working with and researching this technique, and one of the best starting sources for understanding can be found at https://mbtmath.wordpress.com. Much of what you'll find on this syllabus is taken from this resource.

Short Description: You only receive credit for answers that demonstrate you completely understand (have mastered) a topic. But, you get many chances to display mastery throughout the semester with no penalty at all for earlier attempts.

Long Description: The course has been boiled down to 22 essential types of questions, or "topics," and your mastery of questions on these topics is assessed through seven mastery testing days, one smaller mastery testing opportunity between testing days, and the final exam period. Each problem submitted is graded as either "mastered" or "not mastered" and a grade of "mastered" indicates that you have demonstrated full understanding of the concept being tested and further work on the topic is not necessary. Once you have mastered a problem you need not ever attempt it again on a future exam, including the final exam. There is no penalty whatsoever for multiple attempts taken to achieve mastery.

Your overall exam grade is then determined by the number of topics you have mastered throughout the semester; see below for more about how the number of topics translates to a grade for the exam portion of the class and what the topics are!

Why such a different examination policy? A typical policy that has four tests on which material on test 1 is not revisited until the final exam promotes a "fixed mindset" mentality and does not encourage growth in learning; allowing multiple attempts to achieve mastery on a single topic is a "growth mindset" - we firmly believe that you can all do this! It may just take some of you a little longer or shorter for certain topics. Rather than thinking "I can't do this" you should be thinking "I can't do this, yet" and work towards getting it done.

Notes on Mastery-Based Examination (in no specific order, credit to Austin Mohr):

- Clear content objectives, students continually know exactly what they need to work on to improve.
- Credit only for eventual mastery. No partial credit.
- Multiple attempts with complete forgiveness.
- A points-based system sets arbitrary deadlines by which time perfection must be attained or else penalties apply.
- Perseverance:
- Points: Try a problem once, maybe twice, hope for the best.
- Mastery: Keep trying until you succeed (and I know you can).
- Use of feedback on exams:
- Points: Do you agree with the instructor's grading?
- Mastery: What can I do to fully demonstrate that I understand the concept (improvement!)?
- Reduced Anxiety:
- Points: Every exam has the potential to damage your GPA.
- Mastery: No one exam can harm your grade.
- Intelligent Test Preparation: You may actually choose to skip problems on a test. Better to achieve mastery on some than to demonstrate mediocrity on all. Given time constraints of the latter tests, most students will only be able to focus on 5-8 problems in 90 minutes.
- Formative Assessment:
- Points: How many points is this error worth?
- Mastery: Will the student benefit from studying the concept again?
- No longer will any of us have to wonder just what exactly a 7/10 means on a problem compared to an 8/10.
- In most points-based systems, a blank exam question is a heavy blow to a student's grade. On the other hand, a student who provides a couple relevant formulas and something resembling the beginning of a solution may receive half credit or more. In the presence of constrained study time, a good strategy is to learn some basics about every test item. Such a student may earn half credit on most items together with a few lucky shots on easier items, which amounts to a passing grade overall. Take a moment to consider whether this experience has adequately prepared the student to apply mathematical thinking to nontrivial problems in the future.

The "broad and superficial" strategy employed above earns no credit under a masterybased system. Instead, a student who wishes to earn a passing exam grade must fully understand an appreciable subset of the main ideas of the course, and a student wishing to earn an A grade must fully understand most or all of the main ideas of the course. Even if students spend no time studying a particular item, we contend that the experience of pursuing deep understanding on the other items leaves them in a stronger position to engage deeply with the troublesome topic when it is needed in the future. Moreover, depth of understanding is critical to one's ability to apply existing mathematical knowledge in novel domains.

There are seven mastery days listed on the day-by-day schedule part of this syllabus. On these days, you will have the opportunity to attain mastery in any of the topics we have covered up to that date...with one caveat: you must attempt to master any new topics available that day. There is also one mini-mastery day listed on the schedule, and on this day, we will use 30 minutes during a regular class period so that you can attempt mastery in up to two topics of your choice; you must contact the instructor prior Midnight the day before a mini-mastery attempt with your choice of topics to attempt. Finally, you will have one opportunity during the final exam week in order to achieve mastery.

The exam portion of your course grade will be based on the number of topics mastered; here is a conversion of the number mastered to a percentage for the exam portion of the grade.

Topics Mastered Exam Percentage	22	21	20	19	18	17	16	15	14	13	12
Topics Mastered Exam Percentage	11	10	97	94	91	88	85	82	79	76	72

Final Exam The final exam will be given during the scheduled time for the final exam for Block 3, Tuesday Dec 10 8:30-11:30AM, in Trexler 263.

Topics

Topic \#	Name	Textbook Section
1	Integration: Projectile Motion	5.5
2	Integration: Area Between Curves	5.1
3	Integration: Volume	5.2
4	Integration: Physics	5.6
5	Integration: Probability	5.7
6	Integration: By Parts	6.2
7	Integration: Improper	6.6
8	Multivariable Functions: Basic	12.1
9	Multivariable Functions: Partial Derivatives	12.3
10	Multivariable Functions: Directional Derivatives	12.6
11	Multivariable Functions: Extrema	12.7
12	Multivariable Functions: Double Integrals	13.1
13	Multivariable Functions: Area, Volume, Center of Mass	13.2
14	Polar Coordinates: Basic	9.4
15	Polar Coordinates: Double Integrals	13.3
16	Sequences	8.1
17	Series: Core	8.2
18	Series: Ratio Test	8.5
19	Power Series	8.6
20	Taylor Series: Core	8.7
21	Taylor Series: Error	8.7
22	Taylor Series: Applications	8.8

Wed	Aug 28	5.5	Intro and Projectile Motion
Fri	Aug 30	5.5	Projectile Motion
Mon	Sept 2		Lab 1: In-Class
Wed	Sept 4	5.1	Area Between Curves
Fri	Sept 6	5.2	Volume
Mon	Sept 9	5.6	Applications of Integration
Wed	Sept 11	5.6	Applications of Integration
Fri	Sept 13		Mastery Day
Mon	Sept 16	5.7	Probability
Wed	Sept 18	6.2	Integration by Parts
Fri	Sept 20	6.6	Improper Integrals Lab 2 assigned
Mon	Sep 23	12.1	Functions of Several Variables
Wed	Sep 25	12.3	Partial Derivatives Lab 2 due
Fri	Sept 27		Mastery Day
Mon	Sept 30	12.6	Gradient and Directional Derivatives
Wed	Oct 2	12.7	Extrema of Functions
Fri	Oct 4	13.1	Double Integrals
Mon	Oct 7	13.1	Double Integrals
Wed	Oct 9	13.2	Area, Volume, Center of Mass
Fri	Oct 11		Mastery Day
			Fall Break
Mon	Oct 21	13.2	Area, Volume, Center of Mass
Wed	Oct 23	9.4	Polar Coordinates
Fri	Oct 25	13.3	Double Integrals in Polar Coordinates
Mon	Oct 28	8.1	Sequences
Wed	Oct 30	8.2	Series
Fri	Nov 1		Mastery Day
Mon	Nov 4	8.2	Series
Wed	Nov 6	8.5	Ratio Test for Series \& Mini Mastery
Fri	Nov 8		Career Services Day
Mon	Nov 11	8.5	Ratio Test for Series
Wed	Nov 13	8.6	Power Series
			Lab 3 assigned
Fri	Nov 15		Mastery Day
Mon	Nov 18	8.7	Taylor Series
Wed	Nov 20	8.7	Taylor Series Lab 3 due
Fri	Nov 22		Mastery Day
Mon	Nov 25	8.8	Applications of Taylor Series
Thanksgiving Break			

Tentative Schedule

Mon	Dec 2	8.8	Applications of Taylor Series Lab 4 assigned
Wed	Dec 4		Mastery Day Review
Fri	Dec 6		Lab 4 due Sunday Dec 8, Midnight

