MATH 111 Mathematical Models for the Management Sciences Fall 2020

Instructor:	Roger Reakes	Office:	My Home
Phone:	375-2450	Email:	reakes@roanoke.edu

- **Office Hours:** Flexible office hours will be available for Zoom meeting office appointments. I will do my very best to accommodate your schedule. To set up an appointment send me an email to request an appointment which includes times you are available. I will send a Zoom meeting invitation based on your availability.
- **Text:** <u>Mathematical Applications for the Management, Life, and Social Sciences, (10th edition),</u> by Ronald Harshbarger and James J. Reynolds.
- **Required Materials:** All students need access to a computer and WiFi for as as many hours as necessary to complete course requirements. The lack of an internet connection due to vacations, jobs and activities are not an excuse for work not being completed.
- **Note:** This course may not be taken for credit if credit has been received for Mathematics 112 or higher. If you have questions concerning this, please contact your advisor immediately. Also, you need to earn a C or better in this course or in INQ 240 to declare a major in Business Administration. Once again, please contact your advisor if you have questions regarding the necessary grades/courses.

Academic Integrity: You are expected to be familiar with the Academic Integrity Code outlined in the booklet, Academic Integrity at Roanoke College.

https://www.roanoke.edu/inside/a-z_index/academic_affairs/academic_integrity.

You are expected to do all work graded for accuracy independently. This includes tests, quizzes, and graded practice problems. You are allowed to work alone, with a partner or a group on the daily independent practice problems which will only be checked for completion.

Course Objective: to provide the background in the quantitative techniques necessary to better understand more advanced courses in Business and Economics.

Course Outcomes: Upon completing this course, the student should be able to:

- 1) solve linear equations (and applications) in one or more variables.
- 2) solve systems of linear equations (and applications) by utilizing graphing, elimination, and matrix row-reduction techniques.
- 3) solve quadratic functions and to utilize these functions in applications.
- 4) utilize both graphical methods and Excel Solver to find the optimal value of a linear function, subject to constraints.
- 5) Select the best fit line or curve function for a data set and find the regression equation.
- 6) find the derivative of a function, interpret the derivative, and use the derivative for business applications.
- Policy on expected number of hours of work per week: Per the Academic Catalog, "For each one-unit course, students are expected to complete 12 hours of work inside and outside of class each week." Realistically, this may vary due to the strength of the background of each individual student with respect to course content.

Grading:

Completion of Watching Videos	5%
Completion of Independent Practice Problems:	10%
Graded Practice Accuracy Problems	15%
Mastery Test Grade:	70%

Grading cont...:

Grades will be assigned using the scale below:

А	93-100	С	73-76
A-	90-92	C-	70-72
B+	87-89	D+	67-69
В	83-86	D	63-66
B-	80-82	D-	60-62
C+	77-79	F	Below 60

Testing Policy: We will use Mastery-Based Testing rather than Points-Based Testing. Mastery-based testing is

very different from what you are used to - do not hesitate to ask me questions! You will only receive credit for answers that demonstrate you completely understand (have mastered) a topic. But you will get MANY chances to display mastery throughout the semester with NO PENALTY for earlier attempts.

- The course has been summarized by 16 topics.
- Your mastery of questions on these topics is assessed through the working of problems in mastery opportunity classes and during the final exam period.
- Each problem submitted is graded as either "Mastered" or "Not Mastered". A grade of Mastery indicates that you have demonstrated a full understanding of the concept being tested and further work on the topic is unnecessary.
- Once you have mastered a topic, you need not attempt it again.
- There is no penalty for multiple attempts taken to achieve mastery.
- <u>Mastery does not mean perfect!</u> It means you understand and can demonstrate all fundamentals of the topic and are proficient at the level desired for the course you do not need to study the topic further.
- Your overall test grade is determined by the number of topics you have mastered illustrated in the table below:

# Mastered	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
Mastery Grade	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	-
	-						• • •										

- All students are required to attempt to master topics for the <u>first time</u> in class on the date listed in the course schedule.
- Retrying to master the topics after the first attempt may be done any time after the first attempt either in class on mastery opportunity days or during office hours.
 - To retry a topic in class you will request which topics you want to attempt to master using a Google Form link sent to you via email or use the link in Inquire. This request must be submitted by NOON the day prior to the mastery opportunity class.
 - To retry a topic during office hours, you must book an appointment during office hours. If my posted office hours do not work with your schedule, you may email me to set up a time that works for both of us.

 Late Work Policy:
 Independent practice problems must be submitted electronically using email (reakes@roanoke.edu) the day they are due and checked for completion. This work will only be accepted on the day it is due. No late papers will be accepted without arrangements approved prior to absence OR without written documentation from a college official. If you miss class for any reason you should email the assignment to me the day it is due! Graded practice problems selected (usually 1 or 2) from the independent practice problems each class and checked for accuracy and may be submitted until solved correctly. They will be accepted up to midnight the day before the final exam.

Attendance: Class attendance is a very important aspect of a student's success in this course. The student is

expected to attend every class and is accountable for any missed classes.

Subject Tutoring: Subject Tutoring is a CRLA Nationally Certified Program located on the lower level of Fintel Library in room 005. Subject Tutoring offers individual appointments in 30-minute intervals for Lab Sciences, Modern Languages, Math and CPSC, Social Sciences, Business and Economics. Hours are Sunday - Thursday 4 p.m. - 9 p.m. For a list of tutorials or to make an appointment, go to www.roanoke.edu/tutoring.

Tentative Schedule and Assignments:

Use the following link:

Course Schedule

Topics:

Use the following link:

Course Topics

Day	Date	Topic/ Video	GP	Topic Description	Independent Practice				
Wed	8/19		None	Course Introduction	Personal Introduction Email				
				Desmos Share Activity					
Mon	8/24	1	None	Permutations, Combinations	pp470-471/ 1,15,27,31,41,43				
Wed	8/26	2	GP1	Functions	pp73-74/ 1,3,4,5,6,13				
				Business Applications of Functions	pp112-113/ 1,9,13				
				Piecewise Functions	pp163-164/ 49				
Mon	8/31	3	GP2	Solving Linear Equations in One Variable	p62/ 9,13,19,31 Graphically & Algebraically				
				Business Applications of Linear Equations	pp113-114/ 3,17,19 Graphically & Algebraically				
				Solving Linear Inequalities in One Variable					
Wed	9/2	4	GP3	Writing Linear functions, Graphing lines	pp85-87/ 9,10,13,17,19,21,23,29,35,37,64 Confirm Algebra Answers Graphically				
				Business Applications of Linear Functions	pp112-113/ 5,7 Confirm Algebra Answers Graphically				
Mon	9/7	5	GP4	Scatter Plots, Correlation & Linear Regression	pp171-172/ 9,10,25,26				
Wed	9/9		None	Required Mastery Opportunity for Topics 1-4					
Mon	9/14	6	GP5	Solutions of systems of linear equations Graphically & Algebraically	p104/ 9,10,13,19,23 Graphically & Algebraically				
				Business Applications of Systems of Equations	p115/ 45,47 Graphically & Algebraically				
		7		Scatter Plots, Correlation & Quadratic Regression	pp171-172/ 11,12,28a,31a				
Wed	9/16	8	GP6&7	Quadratic Functions: Graphing & Properties of Parabolas	pp143-145/ 3,5,31,33 Confirm Algebra Answers Graphically				
				Business Applications of Graphs & Properties of Quadratic Functions	pp151-152/ 7,9,11 Confirm Algebra Answers Graphically				
Mon	9/21	9	GP8	Solving Quadratic Equations	p134/ 5,7,11,13b,15b,25,41,45,47 Graphically & Algebraically				
				Business Applications of Solving Quadratic Equations	pp151-152/ 3,5 Graphically & Algebraically				
Wed	9/23		None	Required Mastery Opportunity for Topics 5-8					
				Mastery Redo Opportunity for Topics 1-4					
Mon	9/28	10	GP9	Business Applications of Quadratic Systems	pp152-153/ 23,25,27,29,31 Graphically & Algebraically				
Wed	9/30	11	GP10	Polynomial, Rational, Power, & Exponential Functions	pp162-164/ 13,43 p336/ 29 (Graph them also!)				
				Using Correlation to Find and graph the Best Fit Curve	pp171-173/ 1-8 all, 32-35 all				
Mon	10/5	12.1	GP11	Solving 3 by 3 Systems Algebraically & Graphically	p104/ 31,33,34 p236/ 57a p252/ 56a Graphically & Algebraically				
Wed	10/7		None	Required Mastery Opportunity for Topics 9-11					

				Mastery Redo Opportunity for Topics 1-8	
Mon	10/12	12.2	GP12.1	Matrices	p194/ 15,17,19,25,27
				Multiplication of Matrices	pp206-207/ 3-13 odd
				Inverses of Matices	p234/ 5,7,15,17
Wed	10/14	12.3	GP12.2	Using Matrix Matrix Equation to Solve Linear System	p104/ 31,33,34 p236/ 57a p252/ 56a
				Using Gauss Jordan Elimination (Rref on TI83/84)	Solve all questions using a matrix equation AND an augmented matix.
Mon	10/19	13.1	GP12.3	Linear Programming: Graphical Methods	pp275-277/ 1,3,15,17 25,27
		13.2		Linear Programming: Using Excel	Shared Excel File IP1, IP2, IP3, IP4
Wed	10/21		None	Required Mastery Opportunity for Topic 12	
				Mastery Redo Opportunity for Topics 1-11	
Mon	10/26	14.1	GP13.1&13.2	Limits and Continuous Functions: Graphs & Tables	pp553-554/ 1,3,7,9,11,13
		14.2		Limits and Continuous Functions: Algebraically	pp 553-554/ 17,21,23,25,31,41
Wed	10/28	14.3	GP14.2&14.3	The Derivative with Limits	577-578/ 1a,2a,12,13
		15.1		The Derivative with Formulas	pp588-589/ 3,7,9,15,21,25,47
				Business Applications of the Derivative	pp624-625/ 3,17,27
Mon	11/2	15.2	GP14.3&15.1	The Product Rule and the Quotient Rule	pp596-597/ 3,7,11,17,39,41,43
				The Chain Rule	pp603-604/ 5,7,17,39,41,47
Wed	11/4		None	Required Mastery Opportunity for Topics 13 &14	
				Mastery Redo Opportunity for Topics 1-12	
Mon	11/9	15.3	GP15.2	Using Derivative Formulas Together	pp610-611/ 13,15,17,37,41,43
		16.1		Higher order Derivatives	pp615-616/ 1,3,7,11,17
Wed	11/11	16.2	GP15.3&16.1	Relative Maxima and Minima	pp647-649/ 1,5,7,51,53
		16.3		Concavity and Points of Inflection	pp660-662/ 23a,23b,35,39
Mon	11/16		GP16.2&16.2	Course Evaluations	
				Required Mastery Opportunity for Topics 15 & 16	
				Mastery Redo Opportunity for Topics 1-14	
Fri	11/20			Final Exam (Mastery Redo Opportunity Topics 1-16)	1:00 pm to 5:00pm
					-