	Instructor	Dr. David Taylor	Phone: (540) 375-4933
		Trexler Hall 270B	Fax: (540) 375-2561
		Email: taylor@roanoke.edu	Web: see Inquire
Class Meetings	Mondays, Wednesdays, and Fridays: 9:40 AM - 10:50 AM in Olin 230		
Office Hours	In an effort to be more available to students while also acknowledging that meetings occur in my schedule that are outside of my direct control, rather than specify office hours specifically, I have chosen to use the "You Can Book Me" online scheduling tool so that you can schedule an appointment whenever, and your appointment will be put on my schedule (this online tool uses my live availability). Note that I am generally on campus all weekdays from 9 AM to 2 PM and you are still welcome to stop by without an appointment, but I may or may not be able to meet at any given time. You can access the online scheduler at:		

- drtaylorofficehours.youcanbook.me

Focus of Inquiry

Intended
Learning
Outcomes

There are many ways to improve decision-making skills; the most common is learning as much as possible before making a choice. This course focuses on how mathematics can be used to inform decisions to be made. Specifically, we explore game theory, which is "the study of mathematical models of conflict and cooperation between intelligent, rational decision-makers" and, while most often applied to economics, has connections to political science, psychology, biology, and other fields. When a decision doesn't involve other people, probability theory guides our thoughts and is the second topic we will explore. Why is one choice better than another? How does another person's desire to compete or be cooperative inform our choices? When chance is involved, how can we make the best choice possible? We address all of these questions, and as time allows we will bring in ideas from combinatorial game theory, information theory, and other related topics.

By the end of this course, successful students will be able to:

- describe and apply methodologies of mathematics or computer science appropriate for the course's discipline and topic,
- write about course topics clearly and effectively,
- interpret quantitative information related to the course topic.

Textbook 1: Game Theory and Strategy, by Philip D. Straffin, MAA Press, ISBN 0-88385-637-9
Textbook 2: The Mathematics of Games: An Introduction to Probability, by David G.
Taylor, CRC Press, ISBN 978-1-4822-3543-2
Reference Book: Easy Writer by Andrea A. Lunsford, 6th Edition
Calculator: You need a calculator able to perform some combinatorial operations (nCr and nPr); a TI-83 is great, but consult the instructor for more details.

Course Grades

A grade scale will be determined after final grades are computed, but will be no worse than the scale given on the next page.

		B+	$87-89$	C+	$77-79$	D+	$67-69$		
A	$93-100$	B	$83-86$	C	$73-76$	D	$63-66$	F	$0-59$
A-	$90-92$	B-	$80-82$	C-	$70-72$	D-	$60-62$		

Homework is assigned regularly in this class and will generally be routine problems from the textbooks that serve as good examples to use in class to reinforce certain topics. Homework will be discussed in class and also collected so that the instructor can provide feedback to you. Completing homework and doing problems is the best way to become familiar with the material! You are encouraged to visit my office hours or ask questions through email about the homework problems, and you are definitely encouraged to work together on the homework! However, please be sure that the final version of your solutions are written independently of others.

Tests

Papers/Projects
The following table lists the weights for the various forms of assessment for this class.

Homework	10%
Papers/Projects	30%
Tests	48%
Final Exam	12%

There will be four tests this semester; the tests will focus primarily on the content of this course, but will also emphasize critical thinking and writing! Homework and class notes are absolutely the best sources of review! The tests will not be designed to be cumulative, but as with any course involving mathematics, material from previous tests can be thought of as a prerequisite for future tests. Note that the first two tests will primarily focus material regarding game theory and the second two tests will primarily focus material regarding probability.

There will be two major projects in this class that both result in a formal paper. The first paper will allow you to explore a connection of game theory to a discipline other than mathematics. You will be required to use our textbook and/or other sources to connect game theory to a question in a different discipline and explain how game theory can be used to answer that question; in particular, part of the project will be motivated by examples in our textbook, and a part will be based on connecting game theory to a discipline of interest to you! At least one source other than our textbook is required. The end product will be a paper that is approximately 4 to 5 pages in length.

The second paper will allow you to explore the mathematics and probability that is found in some game or phenomenon not discussed in class. While this will require some research, the primary focus of this paper is for you to explore the mathematics behind a question that we do not explore together. For instance, you might consider how probability affects decisions made in your favorite board game. This paper should be approximately 3 to 4 pages in length.

Fri	Jan 31	Chapter 7 [S]	Game Trees
Mon	Feb 3	Chapter 9 [S]	Utility Theory
Wed	Feb 5	Chapter 9 [S]	Utility Theory, Review for Test 1
Fri	Feb 7		Test 1
Mon	Feb 10	Chapter 9 [S]	Utility Theory
Wed	Feb 12	Chapter 10 [S]	Games Against Nature
Fri	Feb 14	Chapter 10 [S]	Games Against Nature Paper \#1 Information Discussed
Mon	Feb 17	Chapter 11 [S]	Nash Equilibria and Non-Cooperative Solutions
Wed	Feb 19	Chapter 11 [S]	Nash Equilibria and Non-Cooperative Solutions
Fri	Feb 21	Chapter 11 [S]	Nash Equilibria and Non-Cooperative Solutions
Mon	Feb 24	Chapter 12 [S]	The Prisoner's Dilemma
Wed	Feb 26	Chapter 14 [S]	Strategic Moves, Review for Test 2
Fri	Feb 28		Test 2
			Spring Break
Mon	Mar 9	Chapter 19 [S]	An Introduction to N -Person Games
Wed	Mar 11	Chapter 19 [S]	An Introduction to N -Person Games
Fri	Mar 13	Chapter 1 [T]	Probability Basics Paper \#1 Due
Mon	Mar 16	Chapter 1 [T]	Probability Basics
Wed	Mar 18	Chapter 2 [T]	Expected Value, Roulette, and Craps
Fri	Mar 20	Chapter 2 [T]	Expected Value, Roulette, and Craps
Mon	Mar 23	Chapter 2 [T]	Expected Value, Roulette, and Craps
Wed	Mar 25	Chapter 3 [T]	Combinatorics and Poker
Fri	Mar 27	Chapter 3 [T]	Combinatorics and Poker
Mon	Mar 30	Chapter 3 [T]	Combinatorics and Poker, Review for Test 3
Wed	Apr 1		Test 3
Fri	Apr 3	Chapter 5 [T]	Binomial Distributions and Dice Games Paper \#2 Information Discussed
Mon	Apr 6	Chapter 5 [T]	Binomial Distributions and Dice Games
Wed	Apr 8	Chapter 6 [T]	Cyclic Board Games and Stochastic Matrices
Fri	Apr 10		No Class: Good Friday
Mon	Apr 13	Chapter 6 [T]	Cyclic Board Games and Stochastic Matrices
Wed	Apr 15	Chapter 8 [T]	More Probability Questions, Review for Test 4
Fri	Apr 17		Test 4
Mon	Apr 20	Chapter 7 [T]	The Gambler's Ruin, Review for Final Exam
Thu	Apr 23		Final Exam: 2:00 PM - 5:00 PM Paper \#2 Due

