MATH 268, Spring 2024: Combinatorics and Graph Theory

	Instructor	Dr. Karin Saoub Trexler Hall 270F	Phone: (540) 375-23 Email: saoub@roanc	48 bke.edu		
Class Meetings	Tuesdays, Thursd	ursdays: 10:10 AM - 11:40 AM in Trexler 374				
Student Hours	Drop-in times are and chat anytime appointment usin	-in times are Tuesdays, Thursdays 9am–10am. You are welcome to stop by my office chat anytime my door is open, but if you want dedicated time, please set-up an .intment using https://saoub.youcanbook.me				
About the Course	This course cons combinatorics and	sists of two distinct though related concepts in discrete mathematics ad graph theory.				
The first third of the course surveys main topics in combinatorics, which is counting discrete structures. Combinatorics provides practice with precision in organizing information into an equation, and writing proofs.						
	The last two-third (but are not limite Graphs provide organizing inform	vo-thirds of the course surveys main topics in graph theory. These will include at limited to) graph routes, trees, connectivity, matching, coloring, and planarity. ovide practice with modeling a problem using a mathematical structure, information so a solution can be found, and writing proper mathematical proofs.				
Intended Learning Outcomes	By the end of this proceed efficientl problems to cons identify appropria	s course, successful student y from hypothesis to conclu truct appropriate graph theo ate solution techniques; and	s will be able to construct va usion; identify properties of g pretic models; analyze countin present solutions orally and in	lid proofs that raphs; analyze ng problems to n writing.		
Required Materials	Textbook: Graph 7 Karin Saoub (I Online Resource: http://www.cs. Other: basic calcu All work should b	Theory: An introduction to Pr SBN: 978-0-367-74375-8) Combinatorics by Joy Morris uleth.ca/~morris/Combinator lator e completed neatly in pencil	oofs, Algorithms, and Applicati available at ics/Combinatorics.pdf) or typed.	ons by		
Course Grades	The following tabl	le lists the weights for the va be determined after final gra	rious forms of assessment for Problems Sets Combinatorics Presentation Graph Theory Presentation Applications Presentation Tests (14% each) Final Exam des are computed, but will be	this class. 25% 4% 4% 8% 42% 17% no worse than		
	the scale given determining marg	below. Attendance and cla ginal grades.	ss participation will be con	isidered when		

		B+	87-89	C+	77-79	D+	67-69		
А	94-100	В	83-86	С	73-76	D	63-66	F	0-59
A-	90-93	B-	80-82	C-	70-72	D-	60-62		

Expected Work Hours This course expects you to spend at least 12 hours of work each week inside and outside of class.

Academic Integrity

I subscribe to the academic integrity policies as outlined in Academic Integrity at Roanoke College. Students are expected to be familiar with these policies. As in real life, failure to learn the rules is not an excuse. Please contact me if you have any questions. Be aware that I am contractually obligated to report students if I suspect that they have engaged in academic dishonesty.

During in-class activities, it is fine – and even encouraged – to discuss and learn from one another. Outside of class, discussion of material with classmates can greatly improve your own understanding. There is a difference, however, between telling someone the answer and showing them how to find it or generate it on their own. Therefore, all discussions about course work should be limited to general concepts, not specific instructions of what to write, say, or do to complete an assignment. Misrepresentation of your contribution to a group effort will be considered a violation of the academic integrity policy.

Since a central goal of this subject is to help you become independent and critical thinkers, you are discouraged from using AI tools or other online resources to create explanations or proofs in your assignments, activities, responses, etc. Copying and pasting directly from a web site and claiming it as your own work is the same as copying and pasting directly from a book – both are violations of the academic integrity policy and will be treated accordingly. Any work submitted using AI tools will be treated as though it was plagiarized. If any part of this is confusing or uncertain, please reach out to me for a conversation before submitting your work.

Cell phones must be turned off prior to entering the classroom. Laptops may be used for note-taking during regular class sessions, if this seems useful to you, but you may not log on to the internet or your email unless specifically told to do so. The use of laptops and other electronic devices during an exam is strictly prohibited. Any use of such devices during a quiz or exam will be considered a breach of academic integrity. Note that looking at or using your cell phone during a test or quiz is considered a violation of Academic Integrity regardless of your purpose or intent in doing so.

Attendance & Make-Up Work Attendance is critical to the understanding of the material in the course and some days include presentations and discussions that cannot be made-up; however, you should not attend class if you are ill. I will contact you if I have concerns with your class attendance or for repeated unexcused absences. Failure to address these concerns may result in lowering your overall course grade by up to 10 points.

When absent, excused or unexcused, you are responsible for all material covered in class.

Policies for late work are outlined in the sections below. For rare circumstances outside your control, such as illness, contact me as soon as possible so we can devise a plan for you to complete your work in a timely manner.

Reading & The key to learning a topic in mathematics is participation. We will strive to have an active, Participation rather than passive, classroom environment. The last page of the syllabus is a day by day outline of the sections that will be discussed in class (this is subject to change as needed). You are fully expected to have read the upcoming section before the class meeting! The best way to be an active participant in the classroom is to attempt the daily practice problems that are posted on Inquire.

Problem Sets	A problem set will be due each week, as shown on the schedule on the last page, and is worth a total of 25 points. There are three parts to each problem set. The first part is worth 7 points and will be graded based on effort and completeness. This part consists of the two daily homework assignments for the previous two class periods. Daily homework will provide practice on the topics recently learned in-class and most questions will have solutions worked at the beginning of class. The second part of each problem set is worth 16 points (4 problems worth 4 points each) and will be graded based on the clarity of explanation and correctness of computations or proofs. The third part of the problem set, worth 2 points, is for presentation of the problems.
	When you turn in your problem sets, make sure the four problems graded for correctness are on top and then below are your two daily assignments. Your homework should be neat, organized, and stapled. You can collaborate on the daily homework problems, but you should write up your own solution to the 4 graded problems.
	If you will be absent, turn in your homework before the class period it is due, or have a friend turn it in for you. <i>Late homework will only be accepted within 2 days of the original due date and will automatically lose the 7 points for completion.</i>
Presentations	You will be responsible for presenting some of the material in this class. You should not start on the presentation the night before it is due! These will focus on more in-depth proofs, interesting problems, or puzzles not previously introduced to the class. Students will be in small groups (around 3 students per group). There will be two different types of presentations: topic based and application based.
	For the topic based presentations, groups will give 5-8 minute presentations closely related to the material we have been studying recently. The first round of presentations will be combinatorics based and occur at the end of the combinatorics portion of the course (February 8). The second round of presentations will be split amongst various days in the graph theory portion of the course, and will provide additional insight into topics recently covered in class.
	For the application based presentation, each group will present on an application of graph theory. These presentations should outline not only the way in which graph theory is used to answer a question, but also provide an example of its use. These will be 10-15 minutes in length and occur on April 18. A presentation proposal will be due April 4.
Tests	Three in-class tests will be given, roughly according to the schedule on page 5. Each test will focus on material from the most recent chapters studied. However, as with most mathematics classes, each test will require you to understand and remember things from the past.
Final Exam	The Final Exam is cumulative (covering both Combinatorics and Graph Theory) and will be more proof heavy than the in-class exams. Specific instructions will be given with the final exam regarding the use outside help and resources. The Final Exam will be distributed on the last day of class (April 18) and is due by 11AM on Monday April 29th.
	The Final Exams must be turned in on-time; a late-penalty (after grading) of $33\frac{1}{3}\%$ will be assessed per 24 hours late (rounded up); no exceptions.

Co-Curricular Engagement	The MCSP Department offers a series of talks (MCSP Conversation Series) that appeal to a broad range of interests related to these fields of study. These co-curricular sessions engage the community to think about ongoing research, novel applications and other issues that face our discipline.					
	Members of this cl participation in at le submit a one page p <i>presentation</i> . This sl contemplation of the	ass are invited be involved with all of these meetings; however ast two of these sessions is mandatory. After attending, students will aper reflecting on the discussion to Inquire <i>within one week of the</i> ould not be a regurgitation of the content, but rather a personal experience.				
	Failure to submit a reaction paper will result in a 1% reduction in your fin Additional events may be attended, and subsequent reflection papers may be sub extra credit, with .5% added to your course average for each additional attended total. In addition, you may request that other appropriate events count.					
Study Room & MCSP Tea	The MCSP Study Room, Trexler 271, can be used by you and your friends to meet up so that you can work on homework together or prepare for tests. It is open virtually 24 hours a day, 7 days a week (very occasionally there are meetings in that room). Your student ID card should grant you access to Trexler Hall any time of day if the doors happen to be locked (use the card access point located by the first floor entrance facing the parking lot). Take advantage of this area and time, especially during weekdays when I am around (which is generally a lot)!					
	In addition, our depa stop by the MCSP Stu Come meet other st setting!	rtment offers a weekly tea time for students and faculty; feel free to dy Room for tea and cookies on Thursdays from 2:20 PM to 3:20 PM. Idents as well as chat with the MCSP faculty members in a casual				
Accessible Education Services	AES is located in the oprovides reasonable for services, student provide current doo qualified specialist. Services for Accessil schedule an appoint receive academic ac your earliest convent letter for the current	boode-Pasfield Center for Learning and Teaching in Fintel Library. AES accommodations to students with documented disabilities. To register is must self-identify to AES, complete the registration process, and umentation of a disability along with recommendations from the Please contact Dustin Persinger, Assistant Director of Academic le Education, at 540-375-2247 or by e-mail at aes@roanoke.edu to nent. If you have registered with AES in the past and would like to ommodations for this semester, please contact Dustin Persinger at ence to schedule an appointment and/or obtain your accommodation semester.				
Tentative Course Schedule	The schedule below timing of the topics c and any updates will weeks 7-12, where the More information wi Daily Practice Problec Sets will be turned Inquire.	is tentative and subject to change. It should give you an idea of the overed, assignments, and tests. Assignment due dates are approximate appear on Inquire. The Graph Theory Presentations will occur during e exact timing will align with each group's topic. I be provided in-class and on Inquire. ns and weekly Problem Sets (PS) will be posted on Inquire. Problem n at the start of class on the day listed unless otherwise stated on				
Date	Section	Topic Assignment				
1 Tue J	an 16 2, 3A, 3B	Product/Sum Rule, Permutations & Combinations				

	Thu	Jan 18	3C, 4A	Binomial Theorem, Bijections	
2	Tue	Jan 23	5	Repetitions and Arrangements	PS 1

	Thu	Jan 25	4B	Combinatorial Proofs and Counting Technique Workshop	
3	Tue	Jan 30	7A, 7B	Generating Functions	PS 2
	Thu	Feb 1	7C	Generating Functions for Counting	
4	Tue	Feb 6	10B	Inclusion-Exclusion	PS 3
	Thu	Feb 8		Combinatorics Presentations: All groups	
5	Tue	Feb 13	1.1, 1.2, 1.4	Introduction to Graph Theory and Matrices	PS 4
	Thu	Feb 15		Test 1	
6	Tue	Feb 20	1.3, 1.5, 2.1	Isomorphisms, Proofs and Eulerian Graphs	PS 5
	Thu	Feb 22	2.1, 2.2	Eulerian and Hamiltonian Graphs	
7	Tue	Feb 27	2.2	Hamiltonian Graphs	PS 6
	Thu	Feb 29	3.1 - 3.3	Tree Properties and Rooted Trees	
				Spring Break	
8	Tue	Mar 12	4.1, 4.2	Connectivity and Menger's Theorem	PS 7
	Thu	Mar 14	4.3	Network Flow	
9	Tue	Mar 19	5.1	Matching	PS 8
	Thu	Mar 21		Test 2	
10	Tue	Mar 26	5.2, 5.3	Augmenting Paths, Stable Matching	PS 9
	Thu	Mar 28	5.4	Factors	
11	Tue	Apr 2	6.1, 6.2	Graph Coloring	PS 10
	Thu	Apr 4	6.4	On-line Coloring/Brooks' Theorem	Proposal due
12	Tue	Apr 9	7.1	Planarity and Kuratowski's Theorem	PS 11
	Thu	Apr 11	7.2	Graph Coloring Revisited	
13	Tue	Apr 16		Test 3	
	Thu	Apr 18		Applications Presentations: All groups	
	<mark>Mon</mark>	<mark>Apr 29</mark>		Final Exam due by 11:00 AM	